Abstract
Artificial neural networks have been used for simulation, modeling, and control purposes in many engineering applications as an alternative to conventional expert systems. Although neural networks usually do not reach the level of performance exhibited by expert systems, they do enjoy a tremendous advantage of very low construction costs. This paper addresses the issue of identifying important input parameters in building a multilayer, backpropagation network for a typical class of engineering problems. These problems are characterized by having a large number of input variables of varying degrees of importance; and identifying the important variables is a common issue since elimination of the unimportant inputs leads to a simplification of the problem and often a more accurate modeling or solution. We compare three different methods for ranking input importance: sensitivity analysis, fuzzy curves, and change of MSE (mean square error); and analyze their effectiveness. Simulation results based on experiments with simple mathematical functions as well as a real engineering problem are reported. Based on the analysis and our experience in building neural networks, we also propose a general methodology for building backpropagation networks for typical engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.