Abstract

The urgency of action toward mitigating climate change and reducing material leakage into the environment is inspiring a plethora of innovative technologies, supply chains, and policy actions. These are targeted toward reducing greenhouse gas emissions, natural resource uptake, and decoupling technological systems from fossil-based linear economies using circularity strategies. Industrial and governmental stakeholders are keen to rank these proposed eco-innovations and emerging alternatives based on their scope of contributing to a sustainable and circular economy to meet global warming curtailment and pollution mitigation targets. We describe a novel methodological framework that relies on a multiobjective optimization of cradle-to-cradle life-cycle pathways to screen from a large database of conceptual eco-innovations and rank them based on their potential for establishing a Sustainable Circular Economy (SCE). This methodology is implemented for a motivating case study to evaluate numerous packaging eco-innovations based on their improvement potential and readiness for adoption within the grocery bags value-chain network. It is demonstrated that a preliminary screening step identifies the 10 most promising eco-innovations from a large superset of alternatives, which if developed and adopted can help transition the value chain to a future scenario with net-zero emissions and adherence to the recycled and renewable-content targets set by the United States Plastics pact but at a higher cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call