Abstract

Background and objective: Alzheimer’s disease (AD) is a fatal neurodegenerative disease. Predicting Mini-mental state examination (MMSE) based on magnetic resonance imaging (MRI) plays an important role in monitoring the progress of AD. Existing machine learning based methods cast MMSE prediction as a single metric regression problem simply and ignore the relationship between subjects with various scores. Methods: In this study, we proposed a ranking convolutional neural network (rankCNN) to address the prediction of MMSE through muti-classification. Specifically, we use a 3D convolutional neural network with sharing weights to extract the feature from MRI, followed by multiple sub-networks which transform the cognitive regression into a series of simpler binary classification. In addition, we further use a ranking layer to measure the ranking information between samples to strengthen the ability of the classification by extracting more discriminative features. Results: We evaluated the proposed model on ADNI-1 and ADNI-2 datasets with a total of 1,569 subjects. The Root Mean Squared Error (RMSE) of our proposed model at baseline is 2.238 and 2.434 on ADNI-1 and ADNI-2, respectively. Extensive experimental results on ADNI-1 and ADNI-2 datasets demonstrate that our proposed model is superior to several state-of-the-art methods at both baseline and future MMSE prediction of subjects. Conclusion: This paper provides a new method that can effectively predict the MMSE at baseline and future time points using baseline MRI, making it possible to use MRI for accurate early diagnosis of AD. The source code is freely available at https://github.com/fengduqianhe/ADrankCNN-master.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.