Abstract

Agricultural drainage systems comprising both in-field pipe drains and surface ditches are typically installed to remove excess water from agricultural land. These drainage networks can provide connectivity between phosphorus (P) sources and surface waters thereby increasing the risk of P loss to rivers and streams. The objective of this study was to derive a farm-scale drainage ranking that categorises drainage ditches in terms of P loss risk based on connectivity and physic-chemical characteristics. Ten pilot farms were selected to characterise drainage networks through ground survey and, sediment and water sampling. Five drainage ditch categories were derived based on landscape setting and connectivity. Each category recorded soluble and reactive P concentrations above environmental water quality standards. To assess the risk of surface ditches as a connectivity vector between agricultural P and surface waters ditches were ranked in order of P loss risk by integrating landscape position and sediment P chemistry. Elevated sediment P with high equilibrium P concentration (EPCo) were associated with ditches connected to farm yards, and in sediment sampled at ditch outlets, suggesting P deposition over time indicative of a legacy P source. The greatest risk of P loss was attributed to ditches connecting farm yards to streams, and ditches that connected the drainage network to surface waters, or Outlets. These results rank connectivity risk for P loss along agricultural drainage ditches for farm level risk assessment to target P loss mitigation measures to the appropriate locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call