Abstract

Universal Density cotton bales were formed with relatively dry lint, covered with different types of bagging materials, and the bales stored in a humid environment for more than 3 months. The bale coverings included coated woven polypropylene with and without holes, linear low-density polyethylene film with different hole patterns, and no bale bagging. The bales were weighed periodically during storage. Some bales were then exposed to drier conditions and the weight change over time again recorded. Theoretical diffusion models were considered and the bale weight changes modeled with a single-term decaying exponential. Different bales in the same bagging type changed weight consistent with the models. The rate of bale weight change from the models was used to calculate a half-time to equilibrium, in days, for each bagging type. The half-time for bales with no bagging was 10 days, for bales in coated woven polypropylene bagging with holes punched in it was 34 days, and for bales with a bagging made of polyethylene film with holes was 102 days. This half-time number will allow simplified communication of the effect bale bagging has on the rate of change of cotton bale weight during storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.