Abstract

In this paper, we introduce a concise representation, called right-distance sequences (or RD-sequences for short), to describe all t-ary trees with n internal nodes. A result reveals that there exists a close relationship between the representation and the well-formed sequences suggested by Zaks [Lexicographic generation of ordered trees, Theoretical Computer Science 10 (1980) 63-82]. Using a coding tree and its concomitant tables, a systematical way can help us to investigate the structural representation of t-ary trees. Consequently, we develop efficient algorithms for determining the rank of a given t-ary tree in lexicographic order (i.e., a ranking algorithm), and for converting a positive integer to its corresponding RD-sequence (i.e., an unranking algorithm). Both the ranking and unranking algorithms can be run in O(tn) time and without computing all the entries of the coefficient table.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.