Abstract

When multiple algorithms are applied to multiple benchmarks as it is common in evolutionary computation, a typical issue rises, how can we rank the algorithms? It is a common practice in evolutionary computation to execute the algorithms several times and then the mean value and the standard deviation are calculated. In order to compare the algorithms performance it is very common to use statistical hypothesis tests. In this paper, we propose a novel alternative method based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to support the performance comparisons. In this case, the alternatives are the algorithms and the criteria are the benchmarks. Since the standard TOPSIS is not able to handle the stochastic nature of evolutionary algorithms, we apply the Hellinger-TOPSIS, which uses the Hellinger distance, for algorithm comparisons. Case studies are used to illustrate the method for evolutionary algorithms but the approach is general. The simulation results show the feasibility of the Hellinger-TOPSIS to find out the ranking of algorithms under evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.