Abstract

A tree decomposition of a graph facilitates computations by grouping vertices into bags that are interconnected in an acyclic structure; hence their importance in a plethora of problems such as query evaluation over databases and inference over probabilistic graphical models. The relative benefit from different tree decompositions is measured by diverse (sometime complex) cost functions that vary from one application to another. For generic cost functions like width and fill-in, an optimal tree decomposition can be efficiently computed in some cases, notably when the number of minimal separators is bounded by a polynomial (due to Bouchitte and Todinca); we refer to this assumption as poly-MS.'' To cover the variety of cost functions in need, it has recently been proposed to devise algorithms for enumerating many decomposition candidates for applications to choose from using specialized, or even machine-learned, cost functions. We explore the ability to produce a large collection of high quality'' tree decompositions. We present the first algorithm for ranked enumeration of the proper (non-redundant) tree decompositions, or equivalently minimal triangulations, under a wide class of cost functions that substantially generalizes the generic ones above. On the theoretical side, we establish the guarantee of polynomial delay if poly-MS is assumed, or if we are interested in tree decompositions of a width bounded by a constant. We describe an experimental evaluation on graphs of various domains (including join queries, Bayesian networks, treewidth benchmarks and random), and explore both the applicability of the poly-MS assumption and the performance of our algorithm relative to the state of the art.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.