Abstract
Standard linear regression is commonly used for genetic association studies of quantitative traits. This approach may not be appropriate if the trait, on its original or transformed scales, does not follow a normal distribution. A rank-based nonparametric approach that does not rely on any distributional assumptions can be an attractive alternative. Although several nonparametric tests exist in the literature, their performance in the genetic association setting is not well studied. We evaluate various nonparametric tests for the analysis of quantitative traits and propose a new class of nonparametric tests that have robust performance for traits with various distributions and under different genetic models. We demonstrate the advantage of our proposed methods through simulation study and real data applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Genetic Epidemiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.