Abstract
Abstract We prove a general local law for Wigner matrices that optimally handles observables of arbitrary rank and thus unifies the well-known averaged and isotropic local laws. As an application, we prove a central limit theorem in quantum unique ergodicity (QUE): that is, we show that the quadratic forms of a general deterministic matrix A on the bulk eigenvectors of a Wigner matrix have approximately Gaussian fluctuation. For the bulk spectrum, we thus generalise our previous result [17] as valid for test matrices A of large rank as well as the result of Benigni and Lopatto [7] as valid for specific small-rank observables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.