Abstract

Nonparametric factorial designs for multivariate observations are considered under the framework of general rank-score statistics. Unlike most of the literature, we do not assume the continuity of the underlying distribution functions. The models studied include general repeated measures designs, compound symmetry designs, and designs for longitudinal data. In particular, designs for ordered categorical data are included. The vectors of the multivariate observations may have different lengths. Moreover, our general framework includes missing values and singular covariance matrices which occur quite frequently in practical data analysis problems. The asymptotic properties of the proposed statistics are studied under general nonparametric hypotheses as well as under a sequence of nonparametric contiguous alternatives. L2-consistent estimators for the unknown covariance matrices are given and two types of quadratic forms are considered for testing the nonparametric hypotheses. The results are applied to a two-way mixed model assuming compound symmetry and to a factorial design for longitudinal data. The main idea of the proofs is based on some moment inequalities for empirical distribution functions in mixed models. The details are provided in the Appendix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.