Abstract

Rank position forecasting in car racing is a challenging problem when using a Deep Learning-based model over time-series data. It is featured with highly complex global dependency among the racing cars, with uncertainty resulted from existing and external factors; and it is also a problem with data scarcity. Existing methods, including statistical models, machine learning regression models, and several state-of-the-art deep forecasting models all perform not well on this problem. By an elaborate analysis of pit stop events, we find it critical to decompose the cause-and-effect relationship and model the rank position and pit stop events separately. In choosing a sub-model from different neural network models, we find the model with weak assumptions on the global dependency structure performs the best. Based on these observations, we propose RankNet, a combination of the encoder-decoder network and a separate Multilayer Perception network that is capable of delivering probabilistic forecasting to model the pit stop events and rank position in car racing. Further with the help of feature optimizations, RankNet demonstrates a significant performance improvement, where MAE improves 19% in two laps forecasting task and 7% in the stint forecasting task over the best baseline and is also more stable when adapting to unseen new data. Details of the model optimizations and performance profiling are presented. It is promising to provide useful interactions of neural networks in forecasting racing cars and shine a light on solutions to similar challenging issues in general forecasting problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.