Abstract

Rank one perturbations of selfadjoint operators which are not necessarily semibounded are studied in the present paper. It is proven that such perturbations are uniquely defined, if they are bounded in the sense of forms. We also show that form unbounded rank one perturbations can be uniquely defined if the original operator and the perturbation are homogeneous with respect to a certain one parameter semigroup. The perturbed operator is defined using the extension theory for symmetric operators. The resolvent of the perturbed operator is calculated using Krein's formula. It is proven that every rank one perturbation can be approximated in the operator norm. We prove that some form unbounded perturbations can be approximated in the strong resolvent sense without renormalization of the coupling constant only if the original operator is not semibounded. The present approach is applied to study first derivative and Dirac operators with point interaction, in one dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.