Abstract
The moduli space [Formula: see text] of rank four semistable symplectic vector bundles over a curve X of genus two is an irreducible projective variety of dimension ten. Its Picard group is generated by the determinantal line bundle Ξ. The base locus of the linear system |Ξ| consists of precisely those bundles without theta divisors, that is, admitting nonzero maps from every line bundle of degree -1 over X. We show that this base locus consists of six distinct points, which are in canonical bijection with the Weierstrass points of the curve. We relate our construction of these bundles to another of Raynaud and Beauville using Fourier–Mukai transforms. As an application, we prove that the map sending a symplectic vector bundle to its theta divisor is a surjective map from [Formula: see text] to the space of even 4Θ divisors on the Jacobian variety of the curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.