Abstract
A matrix X is called an outer inverse for a matrix A if XAX=X. In this paper, we present some basic rank equalities for difference and sum of outer inverses of a matrix, and apply them to characterize various equalities related to outer inverses, Moore-Penrose inverses, group inverses, Drazin inverses and weighted Moore-Penrose inverses of matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.