Abstract
A method for inducing a desired rank correlation matrix on multivariate input vectors for simulation studies has recently been developed by Iman and Conover (1982). The primary intention of this procedure is to produce correlated input variables for use with computer models. Since this procedure is distribution free and allows the exact marginal distributions to remain intact it can be used with any marginal distributions for which it is reasonable to think in terms of correlation. In this paper we present a series of rank correlation plots based on this procedure when the marginal distributions are normal, lognormal, uniform and loguniform. These plots provide a convenient tool both for aiding the modeler in determining the degree of dependence among input variables (rather than guessing) and for communicating with the modeler the effect of different correlation assumptions. In addition this procedure can be used with sample multivariate data by sampling directly from the respective marginal empirical distribution functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.