Abstract
In a companion paper, Rubin and Silverberg relate the question of unboundedness of rank in families of quadratic twists of elliptic curves to the convergence or divergence of certain series. Here we give a computational application of their ideas on counting the rational points in such families; namely, to find curves of high rank in families of quadratic twists. We also observe that the algorithm seems to find as many curves of positive even rank as it does curves of odd rank. Results are given in the case of the congruent number elliptic curves, which are the quadratic twists of the curve y2 = x3 – x; for this family, the highest rank found is 6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.