Abstract

This paper presents a novel rank-based method for image watermarking. In the watermark embedding process, the host image is divided into blocks, followed by the 2-D discrete cosine transform (DCT). For each image block, a secret key is employed to randomly select a set of DCT coefficients suitable for watermark embedding. Watermark bits are inserted into an image block by modifying the set of DCT coefficients using a rank-based embedding rule. In the watermark detection process, the corresponding detection matrices are formed from the received image using the secret key. Afterward, the watermark bits are extracted by checking the ranks of the detection matrices. Since the proposed watermarking method only uses two DCT coefficients to hide one watermark bit, it can achieve very high embedding capacity. Moreover, our method is free of host signal interference. This desired feature and the usage of an error buffer in watermark embedding result in high robustness against attacks. Theoretical analysis and experimental results demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.