Abstract

Recently, wireless sensor networks (WSNs) have had many real-world applications; they have thus become one of the most interesting areas of research. The network lifetime is a major challenge researched on this topic with clustering protocols being the most popular method used to deal with this problem. Determination of the cluster heads is the main issue in this method. Cognitively inspired swarm intelligence algorithms have attracted wide attention in the researh area of clustering since it can give machines the ability to self-learn and achieve better performance. This paper presents a novel nature-inspired optimization algorithm based on the gravitational search algorithm (GSA) and uses this algorithm to determine the best cluster heads. First, the authors propose a rank-based definition for mass calculation in GSA. They also introduce a fuzzy logic controller (FLC) to compute the parameter of this method automatically. Accordingly, this algorithm is user independent. Then, the proposed algorithm is used in an energy efficient clustering protocol for WSNs. The proposed search algorithm is evaluated in terms of some standard test functions. The results suggest that this method has a better performance than other state-of-the-art optimization algorithms. In addition, simulation results indicate that the proposed clustering method outperforms other popular clustering method for WSNs. The proposed method is a novel way to control the exploration and exploitation abilities of the algorithm with simplicity in implementation; therefore, it has a good performance in some real-world applications such as energy efficient clustering in WSNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.