Abstract
In nonparametric tests for serial independence the marginal distribution of the data acts as an infinite dimensional nuisance parameter. The decomposition of joint distributions in terms of a copula density and marginal densities shows that in general empirical marginals carry no information on dependence. It follows that the order of ranks is sufficient for inference, which motivates transforming the data to a pre-specified marginal distribution prior to testing. As a test statistic we use an estimator of the marginal redundancy. We numerically study the finite sample properties of the tests obtained when the data are transformed to uniform as well as normal marginals. For comparison purposes we also derive a rank-based test against local ARCH alternatives. The performance of the new tests is compared with a modified version of the BDS test and with the Ljung-Box test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.