Abstract

BackgroundLevodopa (l-dopa) remains the best drug in the treatment of Parkinson’s disease (PD). Unfortunately, long-term l-dopa caused motor complications, one of which is l-dopa-induced dyskinesia (LID). The precise mechanisms of LID are not fully understood. We have previously reported that ranitidine could reduce LID by inhibiting the activity of protein kinase A pathway in a rat model of PD. It is demonstrated that neurotransmitters such as γ-aminobutyric-acid (GABA) and glutamate (Glu) are also involved in the expression of LID. But whether ranitidine could reduce LID by remodeling the neurochemical changes is unknown.MethodsIn the present study, we produced PD rats by injection of 6-hydroxydopamine. Then PD rats were treated with vehicle, l-dopa (6 mg/kg, plus benserazide 12 mg/kg, intraperitoneal [ip]) or l-dopa (6 mg/kg, plus benserazide 12 mg/kg, ip) plus ranitidine (10 mg/kg, oral). Abnormal voluntary movements were adopted to measure the antidyskinetic effect of ranitidine in PD rats. Rotarod tests were used to observe whether ranitidine treatment affects the antiparkinsonian effect of l-dopa. In vivo microdialysis was used to measure nigral GABA and striatal Glu in PD rats.ResultsWe found that ranitidine pretreatment reduced abnormal voluntary movements in l-dopa-primed PD rats without affecting the antiparkinsonian effect of l-dopa. In parallel with behavioral improvement, ranitidine pretreatment reduced protein kinase A activity and suppressed the surge of nigral GABA and striatal Glu.ConclusionThese data indicated that ranitidine could reduce LID by modeling neurochemical changes induced by l-dopa, suggesting a novel mechanism of ranitidine in the treatment of LID.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.