Abstract
Quantum computers are expected to outperform classical computers for specific problems in quantum chemistry. Such calculations remain expensive, but costs can be lowered through the partition of the molecular system. In the present study, partition was achieved with range-separated density functional theory (RS-DFT). The use of RS-DFT reduces both the basis set size and the active space size dependence of the ground state energy in comparison with the use of wave function theory (WFT) alone. The utilization of pair natural orbitals (PNOs) in place of canonical molecular orbitals (MOs) results in more compact qubit Hamiltonians. To test this strategy, a basis-set independent framework, known as multiresolution analysis (MRA), was employed to generate PNOs. Tests were conducted with the variational quantum eigensolver for a number of molecules. The results show that the proposed approach reduces the number of qubits needed to reach a target energy accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.