Abstract
Stepped frequency waveform (SFW) radars are used for synthesizing high range resolution profiles (HRRP). SFW radars suffer from strong range-Doppler coupling and are not robust to coexisting spectral interference. In this paper, we propose a new random, sparse step-frequency radar (RaSSteR) waveform to address these shortcomings. Unlike SFW where the carrier frequency is linearly increased over the available bandwidth, RaSSteR randomizes the frequency sequence to decouple range and Doppler. This new waveform also skips portions of the transmit spectrum without decreasing the range resolution and operates cognitively by focusing all its power in only a few frequencies. We derive theoretical guarantees which demonstrate that, even with few subpulses, RaSSteR has identical target recovery performance as the conventional random stepped frequency (RSF) waveform. Numerical experiments show that RaSSteR's target hit rate has a 30% improvement over the conventional RSF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.