Abstract

We consider space-time adaptive processing (STAP) when the radar returns are recorded by a conformal antenna array (CAA). The statistics of the secondary data snapshots used to estimate the optimum weight vector are not identically distributed with respect to range, thus preventing the customary STAP processor from achieving its optimum performance. The compensation of the range dependence of the secondary data requires precise knowledge of the array response for any direction of arrival (DOA), and, thus, the spatial steering vector (SV). We propose a novel registration-based range-dependence compensation algorithm that gives an accurate estimate of the interference-plus-noise covariance matrix under the hypotheses that calibrated spatial SVs are available only for a small set of DOAs, and that the errors in the model available for the array response are DOA dependent. The performance in terms of signal-to-inference-plus-noise ratio loss is promizing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.