Abstract

In Global Navigation Satellite System (GNSS)-denied environments, image registration has emerged as a prominent approach to utilize visual information for estimating the position of Unmanned Aerial Vehicles (UAVs). However, traditional image-registration-based localization methods encounter limitations, such as strong dependence on the prior initial position information. In this paper, we propose a systematic method for UAV geo-localization. In particular, an efficient range–visual–inertial odometry (RVIO) is proposed to provide local tracking, which utilizes measurements from a 1D Laser Range Finder (LRF) to suppress scale drift in the odometry. To overcome the differences in seasons, lighting conditions, and other factors between satellite and UAV images, we propose an image-registration-based geo-localization method in a coarse-to-fine manner that utilizes the powerful representation ability of Convolutional Neural Networks (CNNs). Furthermore, to ensure the accuracy of global optimization, we propose an adaptive weight assignment method based on the evaluation of the quality of image-registration-based localization. The proposed method is extensively evaluated in both synthetic and real-world environments. The results demonstrate that the proposed method achieves global drift-free estimation, enabling UAVs to accurately localize themselves in GNSS-denied environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.