Abstract
This paper deals with the simultaneous localization and mapping problem (SLAM) for a robot. The robot has to build a map of its environment while localizing itself using a partially built map. It is assumed that (i) the map is made of point landmarks, (ii) the landmarks are indistinguishable, (iii) the only exteroceptive measurements correspond to the distance between the robot and the landmarks. This paper shows that SLAM can be cast into a constraint network the variables of which being trajectories, digraphs and subsets of źn.$\mathbb {R}^{n}.$ Then, we show how constraint propagation can be extended to deal with such generalized constraint networks. As a result, due to the redundancy of measurements of SLAM, we demonstrate that a constraint-based approach provides an efficient backtrack-free algorithm able to solve our SLAM problem in a guaranteed way.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.