Abstract

BackgroundThe increase in relative biological effectiveness (RBE) of proton beams at the distal edge of the spread out Bragg peak (SOBP) is a well-known phenomenon that is difficult to quantify accurately in vivo. For purposes of treatment planning, disallowing the distal SOBP to fall within vulnerable tissues hampers sparing to the extent possible with proton beam therapy (PBT). We propose the distal RBE uncertainty may be straightforwardly mitigated with a technique we call “range modulation”. With range modulation, the distal falloff is smeared, reducing both the dose and average RBE over the terminal few millimeters of the SOBP.MethodsOne patient plan was selected to serve as an example for direct comparison of image-guided radiotherapy plans using non-range modulation PBT (NRMPBT), and range-modulation PBT (RMPBT). An additional plan using RMPBT was created to represent a re-treatment scenario (RMPBTrt) using a vertex beam. Planning statistics regarding dose, volume of the planning targets, and color images of the plans are shown.ResultsThe three plans generated for this patient reveal that in all cases dosimetric and device manufacturing advantages are able to be achieved using RMPBT. Organ at risk (OAR) doses to critical structures such as the cochleae, optic apparatus, hypothalamus, and temporal lobes can be selectively spared using this method. Concerns about the location of the RBE that did significantly impact beam selection and treatment planning no longer have the same impact on the process, allowing these structures to be spared dose and subsequent associated issues.ConclusionsThis present study has illustrated that RMPBT can improve OAR sparing while giving equivalent coverage to target volumes relative to traditional PBT methods while avoiding the increased RBE at the end of the beam. It has proven easy to design and implement and robust in our planning process. The method underscores the need to optimize treatment plans in PBT for both traditional energy dose in gray (Gy) and biologic dose (RBE).

Highlights

  • The increase in relative biological effectiveness (RBE) of proton beams at the distal edge of the spread out Bragg peak (SOBP) is a well-known phenomenon that is difficult to quantify accurately in vivo

  • Multiple beam plans were generated as primary treatment for this patient using non-range modulation PBT (NRMPBT) (Figure 3), RMBPT (Figure 4), and a comparison of DVH’s for the NRMPBT and range-modulation PBT (RMPBT) plans (Figure 5) are shown

  • The actual retreatment plan is shown in order to illustrate how RMPBT is used in this special context and is labeled Range modulation proton beam therapy (RMPBTrt) (Figure 6)

Read more

Summary

Introduction

The increase in relative biological effectiveness (RBE) of proton beams at the distal edge of the spread out Bragg peak (SOBP) is a well-known phenomenon that is difficult to quantify accurately in vivo. The potential for unintentional tissue injury due to putative increased relative biological effectiveness (RBE) at the distal edge of a proton beam is an issue that must be addressed during the planning process [8,11,12,13]. The existing models suggest there may be a 5-10% increase in biological effect at the most distal portion of the SOBP relative to the plateau and an extension of effective proton range by 1–2 mm independent of fractionation and tissue type, while noting “There are no proton RBE values based on humantissue response data, despite clinical experience of the treatment of more than 50,000 patients”. The existing models suggest there may be a 5-10% increase in biological effect at the most distal portion of the SOBP relative to the plateau and an extension of effective proton range by 1–2 mm independent of fractionation and tissue type, while noting “There are no proton RBE values based on humantissue response data, despite clinical experience of the treatment of more than 50,000 patients”. [ICRU-78 [14]; Section 2.4] Current areas of research are exploring how the RBE of protons varies with fraction size and how it affects range [15,16]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.