Abstract

Neuromorphic motion sensors using analog very large scale integrated technology are attractive for use on battery powered robots which require a low payload. Their features include low power consumption, continuous computation, light-weight, and robustness to different light and contrast conditions. Their outputs are not compatible with controllers that require precise measurements from their sensors. We describe a preliminary investigation into neural architectures that can translate information from these type of sensors into an output suitable for controlling the motor outputs of a robot. In this work, we use a neural network to produce an output that is similar to the range measurements of infrared range sensors, and we use this output to guide the behavior of the robot in a collision-avoidance task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.