Abstract
Inverse synthetic aperture radar (ISAR) is a well-known technique for obtaining high-resolution radar images. ISAR techniques have been successfully applied in the recent past in combination with pulsed coherent radar. In order to be more appealing to both civilian and military fields, imaging sensors are required to be low cost, low powered, and compact. Coherent pulsed radars do not account for these requirements as much as frequency modulated continuous wave (FMCW) radars. However, FMCW radars transmit a linear frequency modulated (LFM) sweep in a relatively long time interval when compared with the pulse length of a coherent pulse radar. During such an interval the assumption of stop&go is no longer valid, that is the target cannot be considered stationary during the acquisition of the entire sweep echo. Therefore, the target motion within the sweep must be taken into account. Such a problem is formulated and solved for ISAR systems, where the target is noncooperative and additional unknowns are added to the signal model. In the present work, the authors define a complete FMCW-ISAR received signal model, propose an ISAR image formation technique suitable for FMCW radar and derive the point spread function (PSF) of the imaging system. Finally, the proposed FMCW ISAR autofocusing algorithm is tested on simulated and real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.