Abstract
We analyze the effects of finite-range corrections in halo effective field theory for S-wave proton halo nuclei. We calculate the charge radius to next-to-leading order and the astrophysical S-factor for low-energy proton capture to fifth order in the low-energy expansion. As an application, we confront our results with experimental data for the S-factor for proton capture on Oxygen-16 into the excited 1/2+ state of Fluorine-17. Our low-energy theory is characterized by a systematic low-energy expansion, which can be used to quantify an energy-dependent model error to be utilized in data fitting. Finally, we show that the existence of proton halos is suppressed by the need for two fine tunings in the underlying theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.