Abstract
We describe the range of the spherical Radon transform which evaluates integrals of a function in IRn over all spheres centered on a given sphere. Such a transform attracts much attention due to its applications in approximation theory and (thermo- and photoacoustic) tomography. Range descriptions for this transform have been obtained recently. They include two types of conditions: an orthogonality condition and, for even n, a moment condition. It was later discovered that, in all dimensions, the moment condition follows from the orthogonality condition (and can therefore can be dropped). In terms of the Darboux equation, which describes spherical means, this indirectly implies that solutions of certain boundary value problems in a domain extend automatically outside of the domain. In this article, we present a direct proof of this global extendibility phenomenon for the Darboux equation. Correspondingly, we deliver an alternative proof of the range characterization theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.