Abstract

Range ambiguity is a significant challenge in conventional pulse-Doppler radar systems with medium or high pulse repetition frequencies, greatly impacting radar detection and imaging capabilities. The classic approaches such as waveform diversity and compressed sensing are based on the isolation between pulses. However, these methods encounter issues like residual ambiguity and grid mismatch, resulting in poor range ambiguity suppression performance. In this paper, the multiple signal classification-alternating projection (MUSIC-AP) method is proposed to address these challenges and achieve high-resolution estimation. The proposed method converts the range-velocity estimate into a spectrum estimate, enabling the utilization of the MUSIC algorithm to solve the grid mismatch problem and improve echo reconstruction. Then, to mitigate the effect of ambiguous energy on reconstruction, the MUSIC reconstruction subprocess is embedded into the AP framework. Through iterative approximation, the method gradually suppresses ambiguous and noise energy, thereby further enhancing the echo reconstruction accuracy and range ambiguity suppression performance. Simulations demonstrate the effectiveness of the proposed method. Moreover, algorithm analysis is conducted, considering aspects such as resolution, robustness, and sparsity, which provides a basis for parameter selection and applicability conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.