Abstract
Finding true correspondences from a set of putative correspondences is a basic task in computer vision. Recent advances have demonstrated that Multi Layer Perceptrons (MLPs) can handle the unordered correspondence learning problem by training a deep classifier. However, MLPs ignore the relationship between correspondences, such as geometric information, spatial information and inlier distribution information, which will lead to difficulties in modeling complex global context. To solve this issue, we propose a Relation-Aware Network (RANet), by capturing rich global information from channel and spatial dimensions, to establish reliable correspondences for feature matching. Specifically, we firstly present a Global Context Attention block by a two-branch attention structure to cooperate with MLPs for contextual information extraction. Then, we design a Relation-Aware Filter block by further exploring the channel and spatial relationship information with different connection manners. Finally, we combine two blocks to obtain an enhanced basic block with strong feature representation capacity due to the acquisition of global contextual information. Our experiments have been conducted over both indoor and outdoor datasets on the tasks of outlier removal and camera pose estimation, which demonstrate the superiority of our network that achieves the best performance compared with the state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.