Abstract

The conductance of disordered wires with symplectic symmetry is studied by a random-matrix approach. It has been believed that Anderson localization inevitably arises in ordinary disordered wires. A counterexample is recently found in the systems with symplectic symmetry, where one perfectly conducting channel is present even in the long-wire limit when the number of conducting channels is odd. This indicates that the odd-channel case is essentially different from the ordinary even-channel case. To study such differences, we derive the DMPK equation for transmission eigenvalues for both the even- and odd- channel cases. The behavior of dimensionless conductance is investigated on the basis of the resulting equation. In the short-wire regime, we find that the weak-antilocalization correction to the conductance in the odd-channel case is equivalent to that in the even-channel case. We also find that the variance does not depend on whether the number of channels is even or odd. In the long-wire regime, it is shown that the dimensionless conductance in the even-channel case decays exponentially as <g_even> --> 0 with increasing system length, while <g_odd> --> 1 in the odd-channel case. We evaluate the decay length for the even- and odd-channel cases and find a clear even-odd difference. These results indicate that the perfectly conducting channel induces clear even-odd differences in the long-wire regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call