Abstract
A theory of random-matrix bases is presented, including expressions for orthogonality, completeness and the random-matrix synthesis of arbitrary matrices. This is applied to ghost imaging as the realization of a random-basis reconstruction, including an expression for the resulting signal-to-noise ratio. Analysis of conventional direct imaging and ghost imaging leads to a criterion which, when satisfied, implies reduced dose for computational ghost imaging. We also propose an experiment for x-ray phase contrast computational ghost imaging, which enables differential phase contrast to be achieved in an x-ray ghost imaging context. We give a numerically robust solution to the associated inverse problem of decoding differential phase contrast x-ray ghost images, to yield a quantitative map of the projected thickness of the sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.