Abstract

B-spline based free-form deformation (FFD) is a widely used technique in nonrigid image registration. In general, a third-order B-spline function is used, because of its favorable trade-off between smoothness and computational cost. Compared with the third-order B-splines, a B-spline function with a lower order has shorter support length, which means it is computationally more attractive. However, a lower-order function is seldom used to construct the deformation field for registration since it is less smooth. In this work, we propose a randomly perturbed FFD strategy (RPFFD) which uses a lower-order B-spline FFD with a random perturbation around the original position to approximate a higher-order B-spline FFD in a stochastic fashion. For a given D-dimensional nth-order FFD, its corresponding (n − 1)th-order RPFFD has \((\frac{n}{n+1})^{D}\) times lower computational complexity. Experiments on 3D lung and brain data show that, with this lower computational complexity, the proposed RPFFD registration results in even slightly better accuracy and smoothness than the traditional higher-order FFD.KeywordsImage RegistrationStochastic ApproximationRegistration MethodNonrigid RegistrationRegistration AccuracyThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.