Abstract

This paper investigates the conditional quantile estimation of a randomly censored scalar response variable given a functional random covariate (i.e. valued in some infinite-dimensional space) whenever a stationary ergodic data are considered. A kernel-type estimator of the conditional quantile function is introduced. Then, a strong consistency rate as well as the asymptotic distribution of the estimator are established under mild assumptions. A simulation study is considered to show the performance of the proposed estimator. An application to the electricity peak demand prediction using censored smart meter data is also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.