Abstract

Background and Aim:In recent times, non-aureus staphylococci (NAS) have emerged as the major organisms isolated from mastitis cases in dairy animals, with a predominance of Staphylococcus epidermidis and Staphylococcus chromogenes. As compared to Staphylococcus aureus, much less is known about the molecular types or the spatiotemporal epidemiology of these NAS species. In the present study, randomly amplified polymorphic DNA (RAPD) was employed to detect genetic polymorphisms, intraspecies diversity, and epidemiology of S. chromogenes strains (n=37) isolated from bovine and bubaline mastitis cases in the state of Karnataka.Materials and Methods:Thirty-seven S. chromogenes isolates (14 from bovines and 23 from bubaline) isolated from subclinical mastitis cases, from organized and unorganized sectors, were subjected to RAPD typing. Further, methicillin resistance was determined by cefoxitin disk diffusion method.Results:The amplified DNA fragments ranged from 150 to 3000 base pairs and yielded several RAPD profiles. Further analysis using Digital Image Correlation Engine correlation coefficient and UPGMA method showed that the 37 isolates could be classified into 12 distinct RAPD types (A to L) at 62% similarity (D=0.889). Four of the most predominant RAPD types, B, A, C, and E, in that order, and together, represented 65% of the isolates. High diversity was observed among the isolates both within farms and between geographic locations. Most of the isolates exhibited methicillin resistance. This is the first such report from India.Conclusion:In the absence of defined multilocus sequence type protocols or sufficient sequences available in the public domain, RAPD can be employed to determine genetic diversity of S. chromogenes isolates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.