Abstract
Front-back reversals (FBRs) in sound-source localization tasks due to cone-of-confusion errors on the azimuth plane occur with some regularity, and their occurrence is listener-dependent. There are fewer FBRs for wideband, high-frequency sounds than for low-frequency sounds presumably because the sources of low-frequency sounds are localized on the basis of interaural differences (interaural time and level differences), which can lead to ambiguous responses. Spectral cues can aid in determining sound-source locations for wideband, high-frequency sounds, and such spectral cues do not lead to ambiguous responses. However, to what extent spectral features might aid sound-source localization is still not known. This paper explores conditions in which the spectral profile of two-octave wide noise bands, whose sources were localized on the azimuth plane, were randomly varied. The experiment demonstrated that such spectral profile randomization increased FBRs for high-frequency noise bands, presumably because whatever spectral features are used for sound-source localization were no longer as useful for resolving FBRs, and listeners relied on interaural differences for sound-source localization, which led to response ambiguities. Additionally, head rotation decreased FBRs in all cases, even when FBRs increased due to spectral profile randomization. In all cases, the occurrence of FBRs was listener-dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.