Abstract
In a general discrete‐time market model with proportional transaction costs, we derive new expectation representations of the range of arbitrage‐free prices of an arbitrary American option. The upper bound of this range is called the upper hedging price, and is the smallest initial wealth needed to construct a self‐financing portfolio whose value dominates the option payoff at all times. A surprising feature of our upper hedging price representation is that it requires the use of randomized stopping times (Baxter and Chacon 1977), just as ordinary stopping times are needed in the absence of transaction costs. We also represent the upper hedging price as the optimum value of a variety of optimization problems. Additionally, we show a two‐player game where at Nash equilibrium the value to both players is the upper hedging price, and one of the players must in general choose a mixture of stopping times. We derive similar representations for the lower hedging price as well. Our results make use of strong duality in linear programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.