Abstract
We present a hybrid quantum-classical framework for simulating generic matrix functions more amenable to early fault-tolerant quantum hardware than standard quantum singular-value transformations. The method is based on randomization over the Chebyshev approximation of the target function while keeping the matrix oracle quantum, and is assisted by a variant of the Hadamard test that removes the need for post-selection. The resulting statistical overhead is similar to the fully quantum case and does not incur any circuit depth degradation. On the contrary, the average circuit depth is shown to get smaller, yielding equivalent reductions in noise sensitivity, as explicitly shown for depolarizing noise and coherent errors. We apply our technique to partition-function estimation, linear system solvers, and ground-state energy estimation. For these cases, we prove advantages on average depths, including quadratic speed-ups on costly parameters and even the removal of the approximation-error dependence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.