Abstract
In applications like medical imaging, error correction, and sensor networks, one needs to solve large-scale linear systems that may be corrupted by a small number of arbitrarily large corruptions. We consider solving such large-scale systems of linear equations $A\mathbf{x}=\mathbf{b}$ that are inconsistent due to corruptions in the measurement vector $\mathbf{b}$. With this as our motivating example, we develop an approach for this setting that allows detection of the corrupted entries and thus convergence to the "true" solution of the original system. We provide analytical justification for our approaches as well as experimental evidence on real and synthetic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.