Abstract

Randomized probe imaging (RPI) is a single-frame diffractive imaging method that uses highly randomized light to reconstruct the spatial features of a scattering object. The reconstruction process, known as phase retrieval, aims to recover a unique solution for the object without measuring the far-field phase information. Typically, reconstruction is done via time-consuming iterative algorithms. In this work, we propose a fast and efficient deep learning based method to reconstruct phase objects from RPI data. The method, which we call deep k-learning, applies the physical propagation operator to generate an approximation of the object as an input to the neural network. This way, the network no longer needs to parametrize the far-field diffraction physics, dramatically improving the results. Deep k-learning is shown to be computationally efficient and robust to Poisson noise. The advantages provided by our method may enable the analysis of far larger datasets in photon starved conditions, with important applications to the study of dynamic phenomena in physical science and biological engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.