Abstract

This paper presents a randomized planning algorithm for manipulation tasks that require the robot to release and regrasp an object in different robot postures. Such problems arise, for example, in robotic suturing and knot tying, and in assembly tasks where parts must be guided through complex environments. Formulating the problem as one of planning on a foliated manifold, we present a randomized planning algorithm that, unlike existing methods, involves sampling and tree propagation primarily in the task space manifold; such an approach significantly improves computational efficiency by reducing the number of projections to the constraint manifold, without incurring any significant increases in the number of release-regrasp sequences. We also propose a post-processing topological exploration algorithm and path refinement procedure for reducing the number of release-regrasp sequences in a solution path, independent of the algorithm used to generate the path. Experiments involving spatial open chains with up to 10 degrees of freedom, operating in complex obstacle-filled environments, show that our algorithm considerably outperforms existing algorithms in terms of computation time, path length, and the number of release-regrasp operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.