Abstract

A fast algorithm that approximates a low rank LU decomposition is presented. In order to achieve a low complexity, the algorithm uses sparse random projections combined with FFT-based random projections. The asymptotic approximation error of the algorithm is analyzed and a theoretical error bound is presented. Finally, numerical examples illustrate that for a similar approximation error, the sparse LU algorithm is faster than recent state-of-the-art methods. The algorithm is completely parallelizable and can fully run on a GPU. The performance is tested on a GPU card showing a significant speed-up improvement in the running time in comparison to a sequential execution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.