Abstract

Sphere decoding achieves maximum-likelihood (ML) performance at the cost of exponential complexity; lattice reduction-aided decoding significantly reduces the decoding complexity, but exhibits a widening gap to ML performance as the dimension increases. To bridge the gap between them, this paper presents randomized lattice decoding based on Klein's randomized algorithm, which is a randomized version of Babai's nearest plane algorithm. The technical contribution of this paper is two-fold: we analyze and optimize the performance of randomized lattice decoding resulting in reduced decoding complexity, and propose a very efficient implementation of random rounding. Simulation results demonstrate near-ML performance achieved by a moderate number of calls, when the dimension is not too large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.