Abstract

We discuss isoperimetric inequalities for convex sets. These include the classical isoperimetric inequality and that of Brunn-Minkowski, Blaschke-Santalo, Busemann-Petty and their various extensions. We show that many such inequalities admit stronger randomized forms in the following sense: for natural families of associated random convex sets one has stochastic dominance for various functionals such as volume, surface area, mean width and others. By laws of large numbers, these randomized versions recover the classical inequalities. We give an overview of when such stochastic dominance arises and its applications in convex geometry and probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.