Abstract

The Hausdorff Voronoi diagram of clusters of points in the plane is a generalization of Voronoi diagrams based on the Hausdorff distance function. Its combinatorial complexity is \(O(n+m)\), where n is the total number of points and \(m\) is the number of crossings between the input clusters (\(m=O(n^2)\)); the number of clusters is k. We present efficient algorithms to construct this diagram via the randomized incremental construction (RIC) framework [Clarkson et al. 89,93]. For non-crossing clusters (\(m=0\)), our algorithm runs in expected \(O(n\log {n} + k\log n \log k)\) time and deterministic O(n) space. For arbitrary clusters the algorithm runs in expected \(O((m+n\log {k})\log {n})\) time and \(O(m+n\log {k})\) space. The two algorithms can be combined in a crossing-oblivious scheme within the same bounds. We show how to apply the RIC framework efficiently to handle non-standard characteristics of generalized Voronoi diagrams, including sites (and bisectors) of non-constant complexity, sites that are not enclosed in their Voronoi regions, empty Voronoi regions, and finally, disconnected bisectors and Voronoi regions. The diagram finds direct applications in VLSI CAD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.