Abstract
Neutral atoms are a promising platform for scalable quantum computing, however, prior demonstration of high fidelity gates or low-loss readout methods have employed restricted numbers of qubits. Using randomized benchmarking of microwave-driven single-qubit gates, we demonstrate average gate errors of 7(2)×10^{-5} on a 225 site atom array using conventional, destructive readout. We further demonstrate a factor of 1.7 suppression of the primary measurement errors via low-loss, nondestructive, and state-selective readout on 49 sites while achieving gate errors of 2(9)×10^{-4}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.