Abstract

For solving tensor linear systems under the tensor–tensor t-product, we propose the randomized average Kaczmarz (TRAK) algorithm, the randomized average Kaczmarz algorithm with random sampling (TRAKS), and their Fourier version, which can be effectively implemented in a distributed environment. We analyzed the relationships (of the updated formulas) between the original algorithms and their Fourier versions in detail and prove that these new algorithms can converge to the unique least F-norm solution of the consistent tensor linear systems. Extensive numerical experiments show that they significantly outperform the tensor-randomized Kaczmarz (TRK) algorithm in terms of both iteration counts and computing times and have potential in real-world data, such as video data, CT data, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.